VOLVO PENTA GENSET ENGINE
 TADI641GE

473 kW (643 hp) at $1500 \mathrm{rpm}, 546 \mathrm{~kW}(743 \mathrm{hp})$ at 1800 rpm , acc. to ISO 3046

The TAD1641GE is a powerful, reliable and economical Generating Set Diesel Engine built on the dependable in-line six design.

Durability \& low noise

Designed for easiest, fastest and most economical installation. Well-balanced to produce smooth and vibration-free operation with low noise level.
To maintain a controlled working temperature in cylinders and combustion chambers, the engine is equipped with piston cooling. The engine is also fitted with replaceable cylinder liners and valve seats/guides to ensure maximum durability and service life of the engine.

Low exhaust emission

The state of the art, high-tech injection and charging system with low internal losses contributes to excellent combustion and low fuel consumption.
The TAD1641GE complies with EU
Stage 2 exhaust emission regulations.

Easy service \& maintenance

Easily accessible service and maintenance points contribute to the ease of service of the engine.

Technical description

Engine and block

- Optimized cast iron cylinder block with optimum distribution of forces without the block being unnecessary heavy.
- Wet, replaceable cylinder liners
- Piston cooling for low thermal load on pistons and reduced ring temperature
- Tapered connecting rods to reduce risk of piston cracking
- Crankshaft induction hardened bearing surfaces and fillets with seven main bearings for moderate load on main and big-end bearings
- Nitrocarburized transmission gears for heavy duty operation
- Keystone top compression rings for long service life
- Viscous type crankshaft vibration damper
- Replaceable valve guides and valve seats
- Over head camshaft and four valves per cylinder equipped with camshaft damper to reduce noise and vibrations.

Lubrication system

- Full flow oil cooler
- Full flow disposable spin-on oil filters, for extra high filtration
- The lubricating oil level can be measured during operation (Standard dipstick only)
- Gear type lubricating oil pump, gear driven by the transmission

Features

- Maintained performance, air temp $40^{\circ} \mathrm{C}$
- Cooling system ($55^{\circ} \mathrm{C}$)
- Fully electronic with Volvo Penta EMS 2
- Dual frequency switch (between 1500 rpm and 1800 rpm)
- High power density
- Emission compliant
- Low noise levels
- Gen Pac configuration

Fuel system

- Self de-aerating system. When replacing filters all fuel stays in the engine.
- Non-return fuel valve
- Electronic unit injectors
- Fuel prefilter with water separator and water-in-fuel indicator / alarm
- Gear driven low-pressure fuel pump
- Fine fuel filter with manual feed pump and fuel pressure switch
- Fuel shut-off valve, electrically operated

Cooling system

- Efficient cooling with accurate coolant control through a water distribution duct in the cylinder block. Reliable sleeve thermostat with minimum pressure drop
- Belt driven, maintenance-free coolant pump with high degree of efficiency
- Coolant filter as standard

Turbo charger

- Efficient and reliable turbo charger
- Extra oil filter for the turbo charger

Electrical system

- Engine Management System 2 (EMS 2), an electronically controlled processing system which optimizes engine performance. It also includes advanced facilities for diagnostics and fault tracing
- The instruments and controls connect to the engine via the CAN SAE J1939 interface, either through the Control Interface Unit (CIU) or the Digital Control Unit (DCU). The CIU converts the digital CAN bus signal to an anolog signal, making it possible to connect a variety of instruments. The DCU is a control panel with display, engine control, monitoring, alarm, parameter setting and diagnostic functions. The DCU also presents error codes in clear text.
- Sensors for oil pressure, oil temp, boost pressure, boost temp, coolant temp, fuel temp, water in fuel, fuel pressure and two speed sensors. Crank case pressure, piston cooling pressure, oil level and air filter pressure drop sensors.
- Alternator 24V / 80A

Technical Data

General

Engine d
No. of cylinders and configuration
TAD1641GE
Method of operation in-line 6
Bore, mm (in.)... 44 (5.67)
Stroke, mm (in.) \qquad 165 (6.50)
Displacement, I (in ${ }^{3}$) 1.12 (983.7)

Compression ratio .16.5:1
Dry weight, kg (lb). 1480 (3263)
Dry weight with Gen Pac, kg (lib) \qquad $910(4211)$
Wet weight, kg (lb). kg (lb) 1550 (3417)
Wet weight with Gen Pac, kg (lb) \qquad

Performance	1500 rpm	1800 rpm
with fan, kW (hp) at:		
Prime Power	430 (585)	485 (660)
Max Standby Power	473 (643)	546 (743)
Lubrication system	1500 rpm	1800 rpm
Oil consumption, liter/h (US gal/h) at:		
Prime Power	0.10 (0.026)	0.11 (0.029)
Max Standby Power	0.10 (0.026)	0.12 (0.032)
Oil system capacity incl filters, liter ... 42		
Fuel system	1500 rpm	1800 rpm
Specific fuel consumption at: Prime Power, $\mathrm{g} / \mathrm{kWh}$ ($\mathrm{lb} / \mathrm{hph}$)		
25 \%	216 (0.350)	228 (0.369)
50 \%	199 (0.322)	204 (0.331)
75 \%	196 (0.318)	202 (0.328)
100 \%	199 (0.322)	206 (0.334)
Max Standby Power, g/kWh (lb/hph)		
25 \%	217 (0.351)	233 (0.370)
50 \%	197 (0.320)	205 (0.332)
75 \%	196 (0.318)	203 (0.330)
100%	200 (0.324)	210 (0.340)
Intake and exhaust system	1500 rpm	1800 rpm
Air consumption, $\mathrm{m}^{3} / \mathrm{min}$ (cfm) at:		
Prime Power	35.5 (1254)	44.0 (1554)
Max Standby Power	38.0 (1342)	45.8 (1617)
Max allowable air intake restriction,		
$\mathrm{kPa}(\mathrm{ln} \mathrm{wc}$)	5 (20.1)	5 (20.1)
Heat rejection to exhaust, kW (BTU/min) at:		
Prime Power	326 (18539)	373 (21212)
Max Standby Power	356 (20245)	442 (25136)
Exhaust gas temperature after turbine,		
${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ at:		
Prime Power	443 (829)	436 (817)
Max Standby Power	455 (851)	479 (893)
Max allowable back-pressure in exhaust line,		
kPa (ln wc)	10 (40.2)	10 (40.2)
Exhaust gas flow, $\mathrm{m}^{3} / \mathrm{min}(\mathrm{cfm})$ at:		
Prime power	85.0 (3002)	100.6 (3553)
Max Standby Power	92.0 (3249)	110.4 (3899)
Cooling system	1500 rpm	1800 rpm
Heat rejection radiation from engine,		
kW (BTU/min) at:		
Prime Power	18 (1024)	22 (1251)
Max Standby Power	20 (1137)	24 (1365)
Heat rejection to coolant kW (BTU/min) at:		
Prime Power	170 (9668)	212 (12056)
Max Standby Power	184 (10464)	231 (13137)
Fan power consumption, kW (hp)	11 (15)	19 (26)

Standard equipment

Engine
Gen Pac
Engine
Automatic belt tensioner

Lift eyelets

Flywheel
Flywheel housing with conn. acc. to SAE 1
Flywheel for 14" flex. plate and flexible coupling
Vibration dampers

Engine suspension

Fixed front suspension
Lubrication system
Oil dipstick
Full-flow oil filter of spin-on type
By-pass oil filter of spin-on type
Oil cooler, side mounted
Low noise oil sump
Fuel system
Fuel filters of disposable type
Electronic unit injectors
Pre-filter with water separator
Intake and exhaust system
Air filter with replaceable paper insert
Air restriction indicator
Air cooled exhaust manifold
Connecting flange for exhaust pipe
Exhaust flange with v-clamp
Turbo charger, low right side
Cooling system
Radiator incl intercooler
Belt driven coolant pump
Fan hub
Thrust fan
Fan guard
Belt guard
Control system
Engine Management System (EMS) with
CAN-bus interface SAE J1939
CIU, Control Interface Unit

Alternator

Alternator 80A / 24V
Starting system
Starter motor, 7.0 kW , 24 V
Connection facility for extra starter motor
Instruments and senders
Temp.- and oil pressure for automatic
stop/alarm $103^{\circ} \mathrm{C}$
Other equipment
Expandable base frame
Engine Packing
Plastic wrapping
${ }^{1)}$ must be ordered, se order specification

- optional equipment or not applicable
- included in standard specification

Dimensions TAD1641GE

Not for installation

Power Standards

The engine performance corresponds to ISO 3046, BS 5514 and DIN 6271. The technical data applies to an engine without cooling fan and operating on a fuel with calorific value of $42.7 \mathrm{MJ} / \mathrm{kg}$ ($18360 \mathrm{BTU} / \mathrm{lb}$) and a density of $0.84 \mathrm{~kg} / \mathrm{liter}$ ($7.01 \mathrm{lb} / \mathrm{US}$ gal), also where this involves a deviation from the standards. Power output guaranteed within 0 to $+2 \%$ att rated ambient conditions at delivery. Ratings are based on ISO 8528. Engine speed governing in accordance with ISO 3046/IV, class A1 and ISO 8528-5 class G3
Exhaust emissions
The engine complies with EU stage 2 emission legislation according to the Non Road Directive EU 97/68/EEC. The engine also complies with TA-luft -50\% exhaust emission regulations.

Rating Guidelines

PRIME POWER rating corresponds to ISO Standard Power for continuous operation. It is applicable for supplying electrical power at variable load for an unlimited number of hours instead of commercially purchased power. A10 \% overload capability for govering purpose is available for this rating.
MAXIMUM STANDBY POWER rating corresponds to ISO Standard Fuel Stop Power. It is applicable for supplying standby electrical power at variable load in areas with well established electrical networks in the event of normal utility power failure. No overload power failure. No overload capability is available for this rating
$1 \mathrm{hp}=1 \mathrm{~kW} \times 1.36$

Information

For more technical data and information, please look in the Generating Set Engines Sales Guide.

AB Volvo Penta
SE-405 08 Göteborg, Sweden

